HPLC-Beginner Webinar Series

Liquid Chromatography Fundamentals

We start the LC Beginner webinar series with an overview of basic terms relevant to liquid chromatography.

Speaker

Laura Montis
Product Specialist Liquid Phase Separations
Agilent

 

 

Stationary Phases in HPLC – Part I

Reversed phase or normal phase?
Fully porous, partially porous, end capping?
In this webinar, we will cover different stationary phases (RP and NP) and the selection of the particle.

Speaker

Cecilia Mazza
Product Specialist, EMEA IDO – Chemistries & Suppliers
Agilent

 

 

Stationary Phases in HPLC – Part II

In the second part of the stationary phases webinars, we look at other separation modes: IEX, SEC, ligand exchange and HILIC and what we think they are best suited for.

Speaker

Cecilia Mazza
Product Specialist, EMEA IDO – Chemistries & Suppliers
Agilent

 

 

LC Instrument Hardware

This webinar will give an overview of the different LC modules and how they work.

Speaker

Laura Montis
Product Specialist Liquid Phase Separations
Agilent

 

 

HPLC Detectors

In liquid chromatography, various detectors can be used. In this seminar, we will take a closer look at UV, fluorescence, refractive index and ELSD detection.

Speaker

Ansuman Mahato
Product Specialist Liquid Phase Separations
Agilent Technologies, Inc.

 

 

Single Quad Mass Detection for Chromatographers

This webinar is about single quad mass detectors. We will look at the development of single quads together and highlight the possibilities offered by today’s single quads and how they support the user. The aim of the webinar is to show users how they can easily add mass-selective confirmation to their HPLC-UV methods. In other words: achieve greater security without more complexity.

Speaker

Shaun Pritchard
Product Specialist Liquid Phase Separations
Agilent Technologies, Inc.

 

 

SingleQuad II

This webinar is about single quad mass detectors. We will look at the development of single quads together and highlight the possibilities offered by today’s single quads and how they support the user. The aim of the webinar is to show users how they can easily add mass-selective confirmation to their HPLC-UV methods. In other words: achieve greater security without more complexity.

Speaker

Shaun Pritchard
Product Specialist Liquid Phase Separations
Agilent Technologies, Inc.

 

 

GPC/SEC Detector Selection

This session will explore detectors commonly used in polymer analysis (RID, UV, MALS, Viscometer), emphasizing their specific applications based on polymer types (Branched, Linear, high Mw, low Mw). We will discuss their roles in Mw determination, Quantitation, Viscosity measurement, size and shape determination etc.

Speaker

Ansuman Mahato
Product Specialist Liquid Phase Separations
Agilent Technologies, Inc.

 

 

Sample Preparation

In this part of the course we will deal with sample preparation: why, how and which sample preparation is the most suitable for the target analyte?
SPE, LLSE, or syringe filter?

Speaker

Shaun Pritchard
Product Specialist Liquid Phase Separations
Agilent Technologies, Inc.

 

 

Method Development

When developing an LC method, there are various factors that can be tested to achieve the desired resolution and symmetry of the analytes. In this webinar, we will discuss the various factors and give tips on developing a robust method.

Speaker

Laura Montis
Product Specialist Liquid Phase Separations
Agilent

 

 

Troubleshooting and Everyday Routine for the Instrument

In this webinar, typical LC problems are discussed – how to identify and solve them.

Speaker

Ansuman Mahato
Product Specialist Liquid Phase Separations
Agilent Technologies, Inc.

 

 

Troubleshooting and Everyday Routine (Columns)

Tailing, fronting, and peak doubling are all topics that we will cover during troubleshooting. After the session, we will be able to identify causes and avoid errors.

Speaker

Giorgio Ferlat
MSc, EMEAI IDO Product Specialist, Chemistries and Supplies
Agilent Technologies, Inc.

 

 

Register now >

 

 

Unveiling the Hidden Threats: Researching Emerging Contaminants in Water

The water we have on Earth is finite. Although we have water in abundance, caring for this resource has been one of the world’s most pressing environmental challenges. Sadly, we simply do not know the vast majority of chemicals that are discharged into the environment through human activities. For this reason, the detection and identification of these compounds are essential for accurate toxicological profiling of environmental samples.

Ensuring water quality and safety through analytical testing is crucial for public health and environmental protection. Comprehensive testing involves analysing regulated pollutants, including pesticides, semi-volatile organic compounds, metals, and disinfection byproducts. It also extends to emerging contaminants such as PFAS, microplastics, hormones, and various unknown chemicals.

As environmental challenges continue to evolve, detecting and identifying emerging contaminants in water has become a critical task for researchers. Advanced analytical technologies, such as high-resolution mass spectrometry (HRMS), gas chromatography-mass spectrometry (GC-MS), and liquid chromatography-tandem mass spectrometry (LC-MS/MS), play a pivotal role in this effort. These sophisticated instruments not only enhance the detection capabilities but also contribute to a deeper understanding of the toxicological impacts of unknown chemicals.

The role of advanced analytical technologies

High-Resolution Mass Spectrometry (HRMS)

HRMS provides unparalleled precision and accuracy in measuring the mass of chemical compounds. It allows for the detection of a wide range of contaminants, even those present at trace levels. This technology is particularly beneficial for non-targeted analysis, where the goal is to identify unknown compounds in water samples. By delivering high-resolution data, HRMS enables researchers to pinpoint the exact mass of contaminants, facilitating their identification and characterisation.

Watch our webinar on Using Liquid Chromatography with QTOF High-Resolution Mass Spectrometry to Identify Emerging Contaminants in Urban Waters >

Gas Chromatography-Mass Spectrometry (GC-MS)

GC-MS is a powerful tool for separating and analysing volatile and semi-volatile organic compounds. It combines the separation capabilities of gas chromatography with the detection prowess of mass spectrometry. This technology is essential for identifying contaminants that may not be detectable through other means. GC-MS excels in providing detailed information about the chemical composition of water samples, making it indispensable for comprehensive water quality assessments.

Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS)

LC-MS/MS is renowned for its sensitivity and specificity in detecting and quantifying contaminants. This technology is particularly effective for analysing non-volatile and polar compounds that are challenging to detect with GC-MS. LC-MS/MS allows researchers to conduct multi-residue analysis, detecting multiple contaminants simultaneously. Its high throughput and precision make it a cornerstone in environmental monitoring and toxicological studies.

New threats emerging

Microplastics are tiny synthetic particles or polymeric matrices derived from plastic, ranging from 1 µm to 5 mm in size and insoluble in water. According to an article published by Agilent, current research believes that microplastics will also degrade into smaller particles on a nanoscale, called ‘nanoplastics’. Despite increasing analysis, their environmental risk remains unclear. The World Health Organisation (WHO) has called for more scientific research to better understand the potential toxicity of microplastics.

Download the infographic poster on Accurate Microplastics Analysis >

A recent study found that humans could be consuming between 39,000 to 52,000 microplastic particles a year.

A recently published study* stated, “The prevalence of micro and nanoplastics (MNPs) in various environmental and human compartments has highlighted the need for analytical methods to accurately detect and quantify these contaminants. Pyrolysis-gas chromatography coupled with mass spectrometry (Py-GC-MS), one of the thermo-analytical methods, is evolving as an analytical technique to quantify MNPs in complex matrices.”

Agilent 990 Micro GC

This study evaluated the impact of using diverse polystyrene (PS) standards with different molecular weights, polydispersity indexes, tacticity, end-capping, and chain branching, on quantifying the mass concentration of PS in various products. The results for the PS-based products showed inconsistencies across different standards, indicating that the measurements for a single product varied substantially when different polystyrene (PS) standards were applied.

The team behind the study made use of Agilent technologies for their research and found there is a need for refined calibration strategies and standardised reference materials to improve the reliability of the MNP analysis method.

From this example, it’s clear that advanced analytical technologies are not only about detection but also about understanding the broader implications of contaminants, like microplastics. By accurately identifying and understanding newer chemicals and contaminants, researchers can assess their toxicological impacts on human health and the environment. This knowledge is crucial for developing effective mitigation strategies and regulatory policies.

Watch our webinar on Microplastics Analysis Just Got Easier: Analysis Direct On-Filter >

Continuous improvement of water analysis

Chemetrix is at the forefront of providing state-of-the-art analytical instruments that empower researchers in their quest to safeguard water quality. By offering cutting-edge technologies such as HRMS, GC-MS, and LC-MS/MS, Chemetrix supports comprehensive environmental research. The instruments are designed to meet the rigorous demands of modern laboratories, ensuring reliable and accurate results.

A prime example of the application of these technologies is non-targeted analysis in water. This approach involves screening water samples for a wide array of contaminants without prior knowledge of their presence. By employing HRMS, GC-MS, and LC-MS/MS, researchers can detect and identify unknown compounds, providing a holistic view of water quality. This method is essential for uncovering emerging contaminants that may not be included in routine monitoring programs.

To preserve our planet’s resources for future generations, the scientific community has to be the trailblazers of today that’ll help find the solutions to protect our tomorrow. There is an incredible amount of passion and dedication among the researchers and scientists who are fighting the good fight against emerging water contaminants and providing valuable insights that everyone can use to make better choices. They can’t do this work without great analytical instruments.

Agilent 8700 LDIR Chemical Imaging System

These instruments enhance detection capabilities, provide valuable insights into toxicological impacts, and support informed decision-making. Chemetrix’s commitment to providing cutting-edge solutions underscores its vital role in environmental research. As we continue to face new environmental challenges, the adoption of these advanced technologies will be crucial in ensuring the safety and sustainability of our water resources.

*Quantitation of polystyrene by pyrolysis-GC-MS: The impact of polymer standards on micro and nano plastic analysis by M. Brits, B. van Poelgeest, W. Nijenhuis, M.J.M. van Velzen, F.M. B´een, G.J.M. Gruter, S.H. Brandsma, M.H. Lamoree

Revolutionising Nutrition: The Rise of Alternative Proteins

The food industry is experiencing a significant shift as alternative proteins rise in popularity. These non-animal-based foods, ingredients, and beverages, including plant-based, cell culture-based, and fermentation-based proteins, offer a new frontier in nutrition and sustainability. Designed to mimic the taste, texture, and nutritional profiles of traditional animal proteins, alternative proteins have come a long way from the mock meats of the past. The market for these products is booming, projected to surpass $290 billion by 2030, driven by their nutritional benefits, environmental sustainability, and potential to enhance food security.

Today, the industry for alternative proteins has technology on their side and are continuously turning to data and analysis to find solutions that will make these increasingly popular food items more appealing to a wider consumer base. And while meat or burgers grown in a lab does grab headlines, it’s a far cry from the products found in grocery stores that are more practical and cost-effective. Making better alternative protein products isn’t as easy as throwing lentils into the mix and scientific methods are helping to expand the alternative protein offerings in the mainstream market.

 

Passing taste tests with lab innovation

As the market for alternative proteins expands, rigorous testing becomes crucial. Ensuring the safety, composition, health benefits, and sustainability of these products is essential for maintaining consumer trust and industry growth. For many consumers, concerns about contaminants like veterinary drugs and hormones in meat products make alternative proteins a preferred choice, perceived as a healthier option. However, with rising demand and sometimes limited supply, food fraud becomes a significant challenge. Fraudsters may substitute expensive plant-based proteins with allergens like wheat or soya, or engage in other deceptive practices such as mislabelling and counterfeiting.

To address these challenges and meet consumer expectations in terms of the sensory experience, food developers are turning to advanced analytical tools. These tools are essential for overcoming the biggest hurdles to mainstream acceptance of alternative proteins: taste and texture.

By using sensitive instruments to analyse and optimise the flavour, aroma, and nutritional profiles of these products, food scientists can ensure they meet the high standards expected by consumers.

The process begins with sample preparation to remove unwanted interferences such as fats, chlorophyll, and pigments, allowing researchers to accurately compare the alternative proteins to their animal-based counterparts. Tools like liquid chromatography and mass spectrometry systems are then used to analyse food on a molecular level. Liquid chromatography provides detailed characterisation of stable components such as amino acids, vitamins, and lipids, while gas chromatography examines volatile compounds to engineer desired smells and tastes.

In addition to instrumental analysis, human taste testers play a crucial role in evaluating the palatability of food. Advanced instrumentation can complement this by objectively identifying the five basic tastes – sweet, salty, sour, bitter, and umami – in alternative proteins. This combined approach ensures a comprehensive assessment of flavour and texture, critical for consumer acceptance.

Ensuring a quality composition of alternative proteins

Agilent’s workflow solutions exemplify the robust testing needed in the alternative protein industry. These solutions validate the authenticity, nutritional information, and safety of alternative protein products. For instance, Agilent’s LC-Q-TOF-MS/MS technology has been used to investigate non-meat proteins and peptide markers in ready-to-cook beef burgers, while GC/MS-based metabolomics approaches differentiate the chemical profiles of plant-based meat alternatives from grass-fed ground beef.

Watch our webinar on Metabolomics Profiling of Meat and Plant-based Meats >

 

Agilent 5977 GC/MSD

 

Elemental analysis is another critical aspect of ensuring the quality of alternative proteins. During the production process, there is potential for elemental metals to contaminate the final products. Agilent’s atomic spectroscopy instruments, such as the 7850 inductively coupled plasma mass spectrometry (ICP-MS), enable the identification and quantification of these metal elements, ensuring product safety.

Agilent 7850 ICP-MS

 

The future of food relies heavily on advancing research into alternative proteins. Technologies such as ICP-MS, triple quadrupole (QQQ) liquid or gas chromatography-mass spectrometry (LC/GC/MS), and high-performance liquid chromatography (HPLC) are recommended for robust testing purposes. These tools not only support the development of safer, healthier, and more sustainable food options but also influence the global food supply chain.

 

Chemetrix has the expert knowledge and innovative solutions required by the food industry to advance the safety and innovative product development of alternative proteins. As the food and agriculture industry faces ever-increasing demands for more sensitive, productive analytical solutions, Chemetrix leads the industry with products and services to help you deliver what your customers demand. Our instruments, systems, and supplies are used throughout the food production chain, including incoming inspection, new product development, quality control and assurance, and packaging. Contact us to find out how our team can assist you.

 

Decoding Automation of Metabolite and Lipid Extraction Workflows

Technology improvements in liquid chromatography/mass spectrometry have enhanced the detection and identification of metabolites and lipids from complex biological samples. As metabolomics and lipidomics measurements become increasingly valued, there is a growing need to automate sample preparation workflows.

Specifically, Agilent automation offers intuitive workflows that provide high data reproducibility and increased throughput while reducing hands-on time. In this webinar, we describe key learnings revealed during the automation of several workflows that extract metabolites and/or lipids from plasma and mammalian cell samples.

 

Speakers

Genevieve Van de Bittner, Ph.D.
R&D Researcher
Agilent Research Laboratories
Agilent Technologies, Inc.

 

Register and watch on demand >

 

Jet Fuel by ICP-MS

The measurement of trace metals in petroleum feeds and its derivatives provides vital information required for running sustainable and daily petroleum operations around the world. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is used in different petroleum facilities due to its ability to perform multi-element analyses, covering a broad range of concentrations as well as being robust and reliable. ICP-MS is becoming more integrated into petroleum laboratories due to its maturity and versatility.

This talk will cover Agilent’s efforts towards developing an ASTM Jet Fuel method. Many interesting elements that aren’t commonly requested, including Platinum (Pt) and Palladium (Pd), will be discussed with this new ICP-MS method. Preliminary data from the ASTM pilot study will be shared in this talk.

 

Speakers

Jenny Nelson, PhD
Application Scientist
Agilent Technologies, Inc.

 

Mark Kelinske
Application Scientist
Agilent Technologies, Inc.

 

Register and watch on demand >

 

Avoiding Common Time Traps in ICP-MS Analysis: A Virtual Workshop

Inductively coupled plasma–mass spectrometry (ICP-MS) is a fast, multielement technique used for trace elemental analysis.

But labs that use ICP-MS – or are thinking of installing one – can find it difficult to unlock the true potential of the technique. Unproductive and often unnecessary activities can eat into lab time, reducing productivity, increasing stress, and potentially impacting data quality. Open to all; this workshop will provide insights you can employ to improve efficiency in your laboratory while also reducing pressure on staff and increasing confidence in the results you report.

 

Speakers

Bert Woods
Application Scientist
Agilent Technologies, Inc.

Joined the Agilent ICP-MS team in 2004, with previous employment in the semiconductor industry with Dominion Semiconductor (IBM/Toshiba) and Micron. Bert is a 1997 Chemistry graduate of Radford University in Virginia and an avid Washington DC Sports fan.

 

L. Craig Jones
ICP-MS Application Scientist
Agilent Technologies, Inc.

Craig has been with Agilent for over 15 years as an ICP-MS applications scientist. He has been involved with multiple types of applications for ICP-MS, including environmental, pharmaceutical, nutraceutical, semiconductor, geologic, and clinical analyses, to name a few. Previous to Agilent, he worked in an environmental lab performing analysis and supervising both the inorganic and organic sections of the laboratory. In his spare time, Craig enjoys volunteering at the local marine science centre, mountain biking, hiking and relaxing at the beach. Craig obtained a bachelor of science degree in chemistry from Fort Lewis College in Durango, CO.

 

Register and watch on demand >

 

Industrialising High-Throughput Glycoproteomics Using AI for Clinical Use

Cancer is a leading cause of death worldwide and there is a great movement globally to develop new treatments and advance how cancer is diagnosed. Technology has been a great help, particularly in recent years, and now there’s new innovation that could take our cancer diagnosis and treatment to a new level.

According to an article published by The Guardian, doctors, scientists and researchers have built an artificial intelligence model that can accurately identify cancer in a development they say could speed up diagnosis of the disease and fast-track patients to treatment. This is but one of many new developments that include AI technology in cancer diagnosis as well as treatment.

In this webinar, we learn the predictive powers of artificial intelligence combined with cutting-edge mass spectrometry to discover clinically relevant biomarkers that can only be revealed by high-resolution analysis of the glycoproteome. This presentation is for all who are interested to learn more about the real-world clinical application of glycoproteomics on cancer diagnosis.

 

Speaker

Dr. Low Ley Hian
Director of Development
InterVenn Biosciences

 

Register and watch on demand >

 

Fingerprinting Honey to Ensure Purity

How pure is that honey in your jar?

Although there’s a rising demand for honey, the honey bee population is also under threat. Another not-so-sweet issue is the number of products labelled as honey on retail shelves that don’t meet the criteria to be classified as pure honey.

The term “adulterated honey” means any honey to which has been added honeydew, glucose, dextrose, molasses, sugar, sugar syrup, inverted sugar, or any other similar product or products other than the nectar of floral exudations of plants gathered and stored in the comb by honey bees.

Food fraud is a significant concern for consumers and producers, with research indicating that fraud accounts for up to 25% of all globally reported food safety incidents. The growing demand for food authenticity means consumers regularly pay a premium for organic and sustainably produced goods like honey. Fraudsters have been flooding markets with adulterated, low-quality, or mislabeled foodstuffs, damaging the livelihoods of legitimate businesses and potentially risking consumer health.

 

Increasing demand

Consumers have become quite specific in their demand for honey, focusing on unifloral honey or monofloral honey obtained predominantly from bees that feed on a single species of plant flowers. This results in a unique colour, flavour, and fragrance exclusive to each type of unifloral honey. As consumers are willing to pay more for these products, protections must ensure that they purchase what they expect.

According to data from the Food and Agriculture Organization of the United Nations, China, Mexico, Russia, Turkey, and the United States are among the major honey-producing countries accounting for approximately 55 per cent of world production. The most common form of adulteration involves extending or diluting honey with other less expensive sweeteners. Commonly identified extenders are corn, cane, and beet syrups.

 

Testing for authenticity to mitigate honey fraud

Global e-commerce is placing honey sales outside regulatory oversight more frequently—a trend expected to continue. This, combined with increased fraudulent activities, makes tackling the problem critical. This is why it is important to identify these substances quickly, efficiently, and consistently. The food industry requires analytical instruments and testing techniques to consistently and rapidly analyze food and identify trace chemicals.

Analytical testing is essential for assessing food authenticity, which is important to protect consumers’ health, the brand, and producers’ income. Testing is a necessary part of an overall strategy to mitigate fraud risk, and methods for authenticity testing are rapidly evolving, with innovative technologies now available for developing robust food testing techniques.


Agilent 1290 Infinity II LC System

For example, it has been demonstrated in recent years that coupling high-performance liquid chromatography with quadrupole time-of-flight (LC/Q-TOF), such as the Agilent 1290 Infinity II LC System with Agilent 6545 LC/Q-TOF, provides a sensitive method to reveal the chemical composition of honey samples. Using this method with a non-targeted approach enables the identification of new types and sources of fraud through the chemical markers in the honey, highlighting which kind of fraudulent activity is occurring. Since this technique evaluates multiple markers in honey to determine authenticity, it is very difficult for fraudsters to cheat by adding one or a few adulterants. This innovative technique is called honey fingerprinting.


Agilent 6545 LC/Q-TOF

 

Determining honey’s unique chemical composition

Honey fingerprinting is the practice of using a suitable technique to record as much information as possible on the chemical composition of a particular honey sample. In the same way, a human fingerprint is unique to individuals, this fingerprinting method unlocks and records the unique molecular composition of authentic honey samples. This enables the mapping of food components in an unprecedented fashion that will revolutionize how honey is regulated for quality, safety, and authenticity.

Utilizing a non-targeted workflow begins with identifying other compounds, including pesticides, molecules that indicate freshness, like a compound called HMF (which suggests thermal processing or age if present in high numbers), and phenolic compounds, which are related to the floral origin of honey. The advantage of using LC/Q-TOF for this technique is its efficiency: higher molecular/trace information levels can be obtained from just one sample in less time versus targeted methods focusing on just a few parameters.

 

Standardising honey fingerprinting methods

Although previous work has been done developing case studies for fingerprinting foodstuffs, including honey, the approaches among laboratories have been different regarding sample preparation and instrumental condition. There are also differences in terms of data processing and analysis. As a result, two laboratories analyzing the same sample may obtain slightly different results. Ideally, developing a standardized fingerprinting method that could be used across all LC/MS-based workflows, enabling the same testing technique to be used across multiple laboratories, would be optimal and where future work is aimed.

When addressing the issues of food safety, product quality, and authenticity, each may be governed by separate sets of regulations. For example, looking at the residues of contaminants in honey, such as pesticides, there may be differences globally. Countries may have their own restrictions for the maximum limit for specific compounds. Contaminants are a part of the picture when considering fingerprinting for honey, but permitted levels may vary between countries.

Additionally, as samples come from the field to the lab for testing, there is potential interest in reversing this and bringing the lab out into the field instead. This interesting but not yet recognised capability would enable regulators and the global food industry to respond more quickly to honey contamination and food fraud.

 

Taking a global approach to ensure honey purity

As the food supply chain becomes increasingly globalized, raising the opportunity for food fraud, experts predict that testing, such as those described above, will become more accessible, increasingly automated, and easier to perform. Fingerprinting methods—in which the entire molecular profile of food can be obtained—will be a feature of future fraud prevention and identification systems.

A positive step forward is the focus on building a library of authentic honey samples and making it an accessible, open database so that honey fingerprinting information is available across multiple stakeholders in the global supply chain. With increased knowledge, more scientists will be able to adopt techniques such as LC/Q-TOF and could also use this testing for other types of food—for example, maple syrup.

The ultimate goal is for food testing laboratories to confidently measure contaminants that threaten the global food chain and tackle food fraud head-on to ensure that consumers can access authentic and safe honey.

(This article has been modified from its original appearance on the Agilent website)