A Look at Data Integrity in Pharma Labs

Data integrity problems in pharmaceutical quality control laboratories are driving more regulatory action than ever before. What has changed to drive all this activity? While plenty of information is available, much of it seems to confuse rather than clarify.

Data integrity is a critical aspect in pharmaceutical laboratories, ensuring that the data generated during business operations and drug manufacturing is accurate, complete, and reliable. When data is reliable, business owners can make informed decisions, improve product quality, and contribute to overall success.

Data integrity is important because it builds trust with stakeholders and ensures that the information used to evaluate drug safety, efficacy, and quality is trustworthy. For patients using a pharmaceutical product, it assures them of the safety that is promised and provides qualitative evidence to support the manufacturer’s guarantee.

As W.E. Deming said,

“Without data, you are just another person with an opinion.”

Let’s explore some common myths of data integrity by looking at facts, based on a study of available resources and direct interactions with U.S. Food and Drug Administration (FDA) staff and their consultants.


Myth: All this regulation around data integrity is new

Data integrity has been a concern for decades. The FDA’s focus on it began with 21 CFR Part 11 in 1998. In 2003, after the pharmaceutical industry spent years struggling with the regulation, the FDA released its Scope and Application guidance, clarifying some of the requirements in Part 11. This guidance also included a discussion of the FDA’s selective enforcement strategy based on what the administration was finding during its inspections. In 2010, the FDA announced its focus on data integrity inspections. At that time, however, few people within the FDA were qualified to understand the data integrity aspects of computerised systems. Thus, beginning in 2013, data integrity has been a primary inspection point, and there has been a visible increase in data integrity enforcement across all geographies. In addition, starting in 2014, as a result of those inspections, the FDA has often included the names of hardware and software products in their warning letters and related public information documents in a less than subtle message to the hardware and software makers that the administration expects them to assist customers with data integrity and compliance concerns.


Myth: Data integrity is an IT issue

Success in addressing data integrity relies less on technology and more on fostering a culture, organisation, and mindset conducive to excellence. Key contributors to effective data integrity solutions include a shared vision of data integrity practices and a commitment to continuous improvement. In both paper-based and electronic systems, data integrity issues can arise, each presenting unique challenges and requiring tailored remediation strategies. Many responses to these issues overlook the possibility of such occurrences in paper-based systems, failing to conduct risk assessments or identify areas for remediation. Compliance and best practices must span data generation, transformation, maintenance, accuracy, and consistency. Cultivating the right culture, assembling capable teams, ensuring transparency in data integrity performance, and aligning company goals with data integrity objectives are all essential components of a successful data integrity initiative.


Myth: Only the software needs to be compliant

Software often does not comply with regulations. The software itself is inert; software contains the technical controls to support compliance with the applicable regulations. In addition to technical controls, procedural controls must also be in place. A discussion about procedural controls versus technical controls is often seen in FDA warning letters, particularly when gaps in a system’s ability to support technical controls required by various regulations have been exploited.

A standard operating procedure (SOP), used as a procedural control, can substitute for a technical control as long as:

• People are trained on that SOP

• The SOP is followed

• Adherence to the SOP is confirmed by quality oversight and/or compliance auditing

Often, however, even if SOPs exist, they are not followed, and adherence isn’t properly verified. Consequently, the FDA will demand system remediation to prevent a recurrence of the behaviour. Audit trails within computerised systems are an example of technical controls. The software must be able to generate audit trails that contain all the components the regulations require, and then those controls must be enabled.

Analytical instrument manufacturers are taking compliance and regulations into account with their products. As an example, Agilent is applying critical thinking to redesigning laboratory software to help respond to new regulatory compliance realities. Many systems may generate audit trail reports in printed form, but the new version of the Agilent OpenLAB Chromatography Data System has a built-in tool that allows a user to electronically review electronic audit trails entries. These audit trail entries are organised by type, an online review can be performed, and electronic signatures incorporated.

Chromatography Data Systems
Chromatography Data Systems


If data integrity regulation compliance is a necessity for your pharma lab, Chemetrix is able to provide solutions that include instruments and software that can help ensure your data is not only well managed and organised, but kept safe and generated with adherence to all the regulatory guidelines.

Data integrity problems can severely impact business operations, leading to financial losses, legal issues, and damaged reputation. It forms the foundation of for reliable pharmaceutical research, development, and manufacturing and, therefore, should be as error-free and precise as possible. It goes beyond being just a practice; data integrity is the cornerstone of trust and excellence in pharmaceutical labs, paving the way for groundbreaking discoveries and lifesaving innovations.


A Compelling Look at Liquid Handling for Microplate Assays

Microplate assays play a crucial role in scientific research and diagnostics. By allowing researchers to perform high-throughput screenings efficiently, the method becomes essential for large-scale experiments, such as drug discovery, where thousands of compounds need to be tested rapidly.

In many microplate-based assays, there is a crucial wash step that plays a significant role in sample preparation and data accuracy.

During the wash step, the fluid (such as reagents, buffers, or unwanted substances) in the microplate well needs to be removed. This process is called aspiration. After aspiration, the microplate well is emptied of the original fluid. Now, it’s time to add a replacement fluid (e.g., a fresh buffer, a specific reagent, or a washing solution). The process of adding the replacement fluid is called dispensing.

The aspiration and dispense steps are critical for maintaining the integrity of microplate-based assays, ensuring accurate results, and optimising workflow efficiency. These labour-intensive procedures can be efficiently automated using instruments that can both wash and dispense reagents on a single hardware platform.

Complete removal or replacement of the original fluid often requires multiple iterations or cycles of aspiration and dispense. After the final aspiration of a wash protocol is completed, often the next step in the assay protocol is the addition of a specific reagent

For example, ELISA reactions are antibody-based reactions that use a series of binding reactions to quantify specific analytes. With a typical ELISA protocol, repeated cycles of microplate washing, reagent addition, and incubation are executed to add specific reagents and to remove unbound material before data collection. When performed manually, this process requires a technician to manage the timing and be available to move plates between the washer and multiple dispensers.


What is needed is the utility of an instrument with both washing and dispensing capabilities within the context of widely used applications.


The Agilent BioTek 406 FX is a modular system and is fully programmable from either its built-in touch screen or using Agilent BioTek Liquid Handling Control (LHC) software on an attached PC. The 406 FX is an automated microplate processor that can perform microplate washing steps in 96-, 384-, and 1536-well microplates. In addition to standard wash routines, the 406 FX has built-in cell-washing capabilities. An internal buffer-switching valve allows for the selection of up to four different wash buffers without changing bottles. A built-in sonicator provides the capability for automated cleaning maintenance of the dispense manifold.

Agilent BioTek 406 FX Washer Dispenser


There are compelling reasons for wanting to make use of a single instrument for these functions. Having both functions in one instrument reduces the need for manual intervention and minimises the time spent switching between different devices. This can improve workflow which then also improves efficiency. A single instrument saves space and is often more cost-effective than buying separate washers and dispensers. Finally, integrated liquid handlers ensure consistent aspiration and dispensing techniques across all wells. This consistency improves data quality and reduces variability.

The advantages of an instrument like Agilent BioTek 406 FX create opportunities for labs to not only improve their operations, it also allow them to offer high-quality analysis output, greater accuracy, and cost-effectiveness. Chemetrix is able to work with your lab to determine the best solution for your needs and ensure that your liquid handling requirements are fulfilled. Speak to one of our consultants today.


Ensuring the Sweet Integrity of Honey Quality with Randox Food Testing Solutions

Honey is a beloved golden elixir that is seeing a growing demand worldwide. As one of nature’s food wonders, this natural sweetener is big business and the international trade of honey is worth over 2 billion dollars.

Its sweet taste and myriad of health benefits mean honey holds a special place in the hearts of consumers worldwide. However, the rise in demand for this natural sweetener has led to increased instances of adulteration, where inferior or artificial substances are added to bulk up volumes or enhance appearance. The need for robust quality assurance measures has never been greater if we want to ensure the integrity of the honey industry and maintain the delicate symbiotic relationship between humans and the honey bee.


Honey That’s Not Quite Honey

Adulteration in honey refers to the deliberate addition of substances, such as sugar syrups or other sweeteners, to honey with the intent to deceive or manipulate its quality, composition, or appearance. This practice is often carried out to increase profits by diluting pure honey with cheaper ingredients or enhancing its colour and texture to mimic higher-quality varieties.

Adulteration can compromise the authenticity, nutritional value, and sensory attributes of honey, posing risks to consumer health and safety. Detection and prevention of adulteration are essential to maintain the integrity and reputation of honey products in the marketplace.

With a commitment to innovation, integrity, and customer satisfaction, Randox empowers producers to uphold the highest standards of purity and authenticity in their honey products, ensuring consumer trust and market success.

For producers looking to export their honey with confidence, there are solutions available for safeguarding the purity and integrity of this cherished commodity every step of the way.


Keeping Honey Bees Healthy

An important pillar of honey quality control is the utilisation of exposomics, a holistic framework that examines the impact of environmental exposures on human health. Exposomics is the study of the comprehensive set of environmental exposures and stressors that impact the well-being and resilience of honey bee colonies.

This approach encompasses various factors, including pesticides, pathogens, pollutants, climate change, habitat loss, and nutritional stressors, among others. By examining the complex interactions between honey bees and their environment, exposomics aims to understand the cumulative effects of these exposures on bee health, colony dynamics, and population decline. Through advanced analytical techniques and interdisciplinary research, exposomics offers insights into strategies for mitigating stressors and promoting the resilience of honey bee populations in the face of environmental challenges.

Watch our webinar on Using Exposomics to Improve Honey Bee Health here >


Championing Honey Integrity

As a brand that cares about global honey quality, Randox Food Testing is a beacon of reliability and excellence, offering comprehensive testing solutions and unparalleled expertise to honey producers worldwide. Leveraging cutting-edge technologies and innovative solutions, Randox offers solutions designed to detect and prevent adulteration, ensuring the purity and authenticity of honey products.

Chemetrix equips food producers with the tools they need to safeguard their honey supply chain from farm to fork. Through advanced techniques such as the Randox Biochip Array technology through to our LC-TOF MS from Agilent Technologies, we enable producers to achieve unparalleled levels of traceability and transparency, instilling confidence in consumers and regulatory authorities alike.

This trusted name in analytical instruments understands the need for honey to remain as close to an all-natural product as possible without drug residues and other contaminants affecting its quality. That’s why their products are ideal for honey testing including antibiotics, pesticides and a range of quality tests such as sucrose, glucose/fructose, HMF and Diastase. Biochip Array Technology is ideal for the screening of multiple antimicrobials within honey, up to 54 samples in just 2 hours 30 minutes.

We also offer a variety of TOF LC/MS instruments like the Agilent 6230B TOF LC/MS. Contact one of our consultants for more information.


Empowering Honey Producers

There are lots of resources and educational opportunities for honey producers looking to enhance their understanding of quality assurance practices. Randox has webinars, seminars, and educational materials that offer insights into emerging trends, regulatory updates, and best practices in honey production and testing.


As a supplier of Randox instruments and products on the African continent, Chemetrix serves as a conduit to ensure honey producers have access to the best testing and analysis solutions available. We are committed to safeguarding the purity and integrity of this cherished commodity every step of the way and helping honey producers guarantee the quality of their products. With some of the world’s best lab equipment available, we can all be part of a culture of continuous improvement and innovation, driving excellence in honey quality control across the industry.


Unlocking the Potential of Automated Imaging Tools in Cell Culture and Assay Development

In the dynamic landscape of cell biology research, advancements in technology continually reshape our understanding of cellular processes and pave the way for innovative discoveries. Automated imaging tools stand at the forefront of this revolution, offering researchers valuable insights into improving routine cell culturing techniques and enhancing the effectiveness and reproducibility of downstream cell-based assays.

Automated imaging tools help researchers learn more about how to make cell culturing better and how to improve the accuracy and consistency of cell-based tests. Unlike traditional manual methods, which are prone to subjectivity and variability, automated imaging offers an objective, quantitative analysis of cellular parameters in real time.

This level of precision and consistency is essential for optimising cell culture conditions, evaluating the efficacy of experimental treatments, and ensuring the reproducibility of results across experiments. Additionally, high-content imaging capabilities enable researchers to multiplex their analyses, simultaneously probing multiple cellular features within the same sample. This holistic approach not only enhances the efficiency of assay development but also allows for a more comprehensive assessment of cellular responses to various stimuli.

Overall, automated imaging tools empower researchers to unravel the complexities of cellular processes with unprecedented accuracy and throughput, driving innovation and accelerating discoveries in cell biology.


Enhancing Cell Culturing Techniques with Automated Imaging

Cell culture lies at the heart of many biological studies, serving as a foundational technique for a myriad of applications, from basic research to drug discovery. However, traditional methods of assessing cell health and behaviour often rely on subjective observations and manual interventions, leading to variability and inefficiencies. Enter BioTek’s LionHeart FX, which can revolutionise cell culture workflows by providing real-time, quantitative data on cell morphology, viability, and proliferation. BioTek Lionheart FX allows you to capture, process, analyse, annotate images, and produce videos with ease. By automating image acquisition and analysis, researchers can gain deeper insights into cellular dynamics, optimise culture conditions, and ensure reproducibility across experiments.

Agilent BioTek Lionheart FX Automated Microscope


Empowering Assay Development

The effectiveness of cell-based assays hinges on the accuracy and reliability of the data obtained. BioTek’s Cytation emerges as a game-changer, offering high-content imaging capabilities that enable multiplexed analysis of cellular parameters in a single experiment. Digital microscopy and multimode detection deliver both phenotypic data and quantitative data from one instrument, maximising laboratory productivity. With its automated imaging and image analysis features, Cytation streamlines assay development accelerates screening processes and enhances the robustness of downstream assays, ultimately driving efficiency and productivity in research endeavours.

Agilent BioTek Cytation C10 Confocal Imaging Reader


Optimising Workflow Efficiency with Integrated Liquid Handling

Liquid handling is a critical aspect of cell culture and assay development, where precision and accuracy are paramount. Manual pipetting procedures not only pose a risk of human error but also limit throughput and scalability. In this regard, BioTek’s MultiFlo FX delivers unparalleled flexibility and efficiency by integrating automated liquid handling with imaging capabilities. Whether dispensing media, performing cell-based assays, or conducting plate washing steps, MultiFlo FX streamlines workflows, minimises hands-on time, and ensures consistent results, empowering researchers to focus on data analysis and interpretation.

Agilent BioTek MultiFlo FX Multimode Dispenser


Embracing the Future of Cell Biology with BioTek

In the rapidly evolving field of cell biology, leveraging state-of-the-art technology is essential for driving innovation and pushing the boundaries of scientific discovery.


BioTek’s Cell Analysis instruments represent a beacon of innovation, offering researchers a comprehensive suite of tools to elevate their research to new heights.


Smart Lab Design: Maximising Space and Efficiency

Thanks to film and television, everyone thinks labs are generous spaces filled to the brim with the latest equipment. In the reality of the world of scientific discovery, where breakthroughs are born from the confines of laboratories, the paradox of limited space presents a unique challenge. The quest for efficient and innovative smart lab designs becomes imperative, transforming constraints into opportunities for creativity and optimisation.


The significance of space optimisation in lab design

Lab spaces, often regarded as the epicentres of innovation, are not immune to the constraints of real estate. The importance of space optimisation in lab design cannot be overstated, especially when faced with the challenges of limited square footage. Efficient use of space directly impacts workflow, collaboration, and the overall productivity of the lab.

Even the science world isn’t immune to the fact that rising operational costs for businesses means lab space costs more and budgets might not allow for that extra room. New labs just starting out might have a small space to work with and grow from there but it gives them a chance as well to find an efficient layout for business growth.

Maximising limited lab space

Having less space doesn’t have to be a big hurdle for a lab to overcome. With thoughtful planning and strategic design, it’s possible to make the most out of every available square meter. Here are some practical ideas to address the challenge:

1. Modular furniture: Opt for modular and flexible furniture that can be easily rearranged to accommodate changing research needs. This adaptability ensures that the lab layout can evolve without major renovations. Bench space that has wheels and clips means the configuration can be altered as the lab changes.

2. Vertical storage solutions: Utilise vertical space for storage. Shelving, cabinets, and other storage solutions that extend upward maximise storage capacity without encroaching on valuable floor space.

3. Shared workstations: Implement shared workstations and collaborative areas to reduce the need for individualised spaces. This fosters a sense of community and optimises the usage of available space.

4. Streamlined equipment selection: Choose compact and multi-functional equipment. Advances in technology have led to the development of instruments that offer robust performance while minimising the physical footprint.

Perfect examples of space-saving equipment include the Agilent Cary 630 FTIR Spectrometer, the world’s smallest FTIR, and the Agilent 5900 ICP-OES, which is the smallest ICP-OES on the market.


Innovative lab layouts and new instruments

Rather than viewing limited space as a hindrance, consider it an opportunity for innovation. Novel lab layouts that prioritise collaboration and flexibility can emerge from the constraints of space limitations.

Embrace open-concept designs, shared spaces, and fluid workstations that encourage dynamic interaction among researchers. Additionally, explore the latest advancements in analytical instruments designed specifically for compact labs. Instruments that integrate seamlessly, require minimal space and deliver optimal performance are key to navigating the challenges of limited lab space.

Space-saving solutions with Chemetrix

The quest for efficient lab design in small spaces is not just a practical necessity; it is an opportunity for creative solutions and innovative layouts. By adopting smart lab designs and leveraging space-saving instruments, laboratories can transcend the limitations of physical space, fostering an environment where groundbreaking discoveries thrive.

As laboratories embark on the journey to optimise their limited space, exploring space-saving analytical instruments becomes a critical step. Chemetrix offers a comprehensive portfolio of instruments designed to be user-friendly, integrate seamlessly with existing systems, and maximise efficiency within confined lab spaces. To unlock the potential of space-saving solutions tailored to your lab’s unique needs, contact Chemetrix today. Together, we can redefine the boundaries of innovation, even in a small space.

The AI Advantage in Revolutionising Lab Quality Control

Imagine a lab where precision meets efficiency, and every operation is optimised to perfection. In the intricate world of laboratory operations, a silent revolution is underway – the integration of Artificial Intelligence (AI) to elevate the standards of quality control. A game-changer that holds the key to unlocking unparalleled advancements in scientific research and experimentation.


The crucial role of AI in lab quality control: Today and tomorrow

As laboratories grapple with increasing complexities in research and analysis, the importance of AI technology becomes increasingly apparent. AI is not just a futuristic concept; it is the present and the future of laboratory operations. Today, AI is being harnessed to enhance quality control practices by providing real-time monitoring, predictive analytics, and automated decision-making.

Looking ahead, AI is poised to become the cornerstone of innovation in labs, offering solutions to challenges that were once deemed insurmountable.


Benefits of using AI in lab quality control: Precision redefined

Real-Time Monitoring: AI systems can monitor and analyse data in real-time, providing an instantaneous and comprehensive view of lab processes. This facilitates early detection of anomalies and deviations, allowing for immediate corrective actions.

Predictive Analytics: By leveraging historical data, AI can predict potential issues before they occur. This proactive approach enables labs to implement preventive measures, minimising the risk of errors and ensuring consistent quality.

Automation of Routine Tasks: AI excels at automating repetitive and routine tasks, freeing up human resources for more complex and creative endeavours. This not only increases efficiency but also reduces the likelihood of human error in quality control processes.

Enhanced Data Analysis: The power of AI lies in its ability to analyse vast datasets quickly and accurately. This capability is invaluable in quality control, where precise analysis is paramount for ensuring the reliability of results.


Future-proofing lab operations with AI

As we embrace the current wave of AI applications in quality control, it’s crucial to consider how these technologies can future-proof lab operations and inspire innovation. Integrating AI-driven technologies like machine learning algorithms, robotic process automation, and advanced analytics positions laboratories at the forefront of scientific advancement. Imagine a future where AI not only optimises existing processes but also catalyses the development of novel methodologies and approaches, pushing the boundaries of what is possible in scientific research.


Explore AI for your lab

In the race toward scientific excellence, laboratories cannot afford to overlook the transformative potential of AI in quality control. The possibilities are vast, and the benefits are tangible. To unlock the full spectrum of AI-driven innovations, labs must explore and embrace these technologies actively. The lab of the future is not a distant vision; it is a reality that can be shaped today through the strategic integration of AI in quality control processes.

With more laboratories embarking on the journey toward AI-driven quality control, the call to action is clear – explore the possibilities, discover the potential, and redefine the future of your lab.


To take the first step towards integrating AI into your quality control processes, engage with leading experts and solution providers. The evolution of laboratory operations awaits, and AI is the key to unlocking unparalleled advancements in quality control and scientific discovery.


Strategic Decision-Making: Balancing Innovation, Budget, and Technology in Scientific Research

Did you know that even in the world of cutting-edge scientific research, principal scientists grapple with a delicate dance between budget constraints, selecting the right tools, and keeping abreast of technological advancements? It’s an intricate tapestry of decisions that define the success of laboratories and the critical role principal scientists play in this high-stakes balancing act.

In the ever-evolving landscape of scientific discovery, the interplay between budget considerations, the selection of the right tools, and staying ahead in technological advancements is more complex than meets the eye. The choices made in this delicate dance have far-reaching implications, influencing the pace of innovation and the ultimate success of research endeavours.


Why Balancing Budget and Technology Matters for Labs

Effective budget planning is paramount for maintaining financial stability, allocating resources wisely, and ensuring the sustainability of research programs. In the world of laboratories, where breakthroughs and advancements are the currency of success, discussions around balancing budgets and technology choices are not just financial exercises but strategic imperatives. Simultaneously, the choice of technology and tools can make or break the success of experiments, affecting the quality and reliability of results.

The principal scientist’s dilemma lies at the crucial nexus of these considerations, shaping the trajectory of scientific progress within a laboratory.


Considerations for Success

Budget Planning: Principal scientists must master the art of budget planning, understanding the financial constraints of the laboratory while aligning resources with overarching research goals. Strategic budget management involves forecasting, risk assessment, and transparent communication to secure funding for critical initiatives.

Tool Selection: The right tools are the backbone of successful scientific breakthroughs. Factors such as scalability, versatility, and long-term viability when selecting tools must be considered. The goal is to invest in instruments that meet current needs and adapt to the evolving demands of research.

Staying Ahead in Technology: In a world where technological advancements are rapid, it’s vital to keep laboratories at the forefront of innovation. Regular assessments of emerging technologies, collaboration with industry leaders, and fostering a culture of adaptability are essential for staying ahead in the dynamic realm of scientific research.


Inspiration for Laboratory Optimisation

Imagine the transformative potential when laboratories optimise their budget, tools, and technology choices. Principal scientists can inspire a culture of innovation by championing a holistic approach that embraces efficiency and excellence. Encourage your team to reevaluate the choices made in the lab, fostering an environment where every decision aligns with the overarching mission of scientific advancement.


Partnering with Chemetrix for Optimal Solutions

As principal scientists navigate the intricate landscape of budget constraints and technological choices, partnering with industry leaders becomes paramount. Chemetrix stands as a beacon of innovation, offering solutions that seamlessly integrate budgetary considerations with cutting-edge technology. This isn’t just a challenge; it’s an opportunity to redefine the landscape of scientific research.

Reducing the Environmental Impact of Laboratories: A Call to Sustainable Action

Did you know that laboratories, the epicentres of scientific discovery, also leave an indelible footprint on the environment, contributing significantly to waste and energy consumption? It’s time we scrutinise the environmental impact of labs and explore actionable steps toward a more sustainable future.

In the pursuit of scientific breakthroughs, laboratories often overlook their environmental impact, but the repercussions are significant. As we grapple with climate change and environmental degradation, the imperative to reduce the ecological footprint of labs becomes ever more critical. Sustainable practices in laboratories not only contribute to global environmental conservation but also foster a culture of responsibility and forward-thinking innovation within the scientific community.


Why it matters: The environmental imperative for labs

The environmental impact of laboratories is substantial, from energy-intensive equipment to disposable plastics and hazardous waste. A survey by Agilent revealed that nearly 80% of labs surveyed recognise the importance of sustainability but only 44% have established formal sustainability initiatives. The urgency to address this dissonance lies in the fact that labs are significant contributors to pollution, resource depletion, and carbon emissions. By adopting eco-friendly practices, labs can mitigate their environmental impact and lead the charge toward a more sustainable scientific future.


Tips for reducing lab environmental impact: A roadmap to sustainability

  • Energy efficiency: Invest in energy-efficient lab equipment, such as fume hoods, freezers, and autoclaves. Regular maintenance and calibration can further optimise energy usage.
  • Waste reduction: Minimise single-use plastics by opting for reusable alternatives. Implement waste segregation practices and explore recycling programs for items like pipette tip boxes and sample vials.
  • Green procurement: Choose suppliers and products with eco-friendly certifications. Consider the life cycle of consumables and equipment, prioritising those with minimal environmental impact.
  • Water conservation: Implement water-saving measures, such as using water-efficient autoclaves and incorporating responsible water-use practices in experiments.
  • Sustainable lab practices: Foster a culture of sustainability within the lab. Encourage staff to turn off equipment when not in use, adopt electronic documentation systems, and participate in eco-friendly initiatives.
  • Decreasing Helium usage: There is an increased shortage in the supply of helium, which is causing a shift to using hydrogen for GCMS instead. Agilent is realising new upgrades on various instruments to allow GCMS to run on hydrogen safely.

Agilent is also focusing on decreasing argon consumption in their Agilent 4210 MP-AES by using nitrogen as an alternative. The Agilent 5800 ICP-OES also utilises the least amount of argon.

Did you know that utilising more efficient UHPLC methods can decrease waste generation by 5 times or more on average? It can also increase lab productivity substantially.

Explore our range of Agilent 1290 HPLC systems with a variety of different detectors and MassSpecs to suit your lab’s needs.

Explore our products

Sustainability has always been a crucial factor for Agilent Technologies. The below article shares how they are leading the way in sustainable supply chains and instrument production from a holistic approach.

Read the article here


Reflecting on your lab’s impact

Imagine the collective impact of every lab committed to sustainable practices. By reflecting on your lab’s environmental impact, you not only contribute to a healthier planet but also set an example for the broader scientific community.

The responsibility to reduce the environmental impact of laboratories rests not just on researchers and lab managers but on the entire scientific community. By adopting sustainable practices, labs can align their efforts with global initiatives for environmental conservation and contribute meaningfully to a healthier planet. Consider the legacy your lab leaves behind – one that goes beyond scientific discoveries to embrace a commitment to environmental stewardship.


Partnering with Chemetrix for a sustainable tomorrow

As we embark on the journey toward greener labs, it’s essential to collaborate with industry leaders committed to sustainable solutions. Chemetrix stands at the forefront of providing environmentally conscious options for analytical instruments and consumables. By partnering with Chemetrix, your lab can actively contribute to a sustainable tomorrow.

Reach out today to explore how together, we can redefine the future of scientific research with a shared commitment to environmental responsibility.

AI Technology and the Lab of the Future

In 2022, Agilent announced its acquisition of advanced artificial intelligence (AI) technology developed by Virtual Control, an AI and machine learning software developer that creates innovative analysis solutions in lab testing. Agilent will integrate the software, known as ACIES, into its industry-leading gas chromatography and mass spectrometry (GS/MS) platforms to improve the productivity, efficiency and accuracy of high-throughput labs the company serves around the world.

ACIES automates the labour-intensive task of gas chromatography/mass spectrometry data analysis improving efficiency in the laboratory workflow, from sampling to reporting. Agilent will integrate the technology into its MassHunter software package for LC/MS and GC/MS instruments.


Digital labs

This move by Agilent signals that the digital age is very much here for laboratories. Science has always driven the world forward and now it will do the same for laboratories.

The lab of the future is a concept built on the foundation of digitalised labs. It encompasses smart technological workflow systems that are connected and capable of collecting vast amounts of data via integrated automation.

A digitalised lab should be considered a more advanced lab as it has more access to data. With data being key to transforming science, increasing amounts of data generated in any lab, let alone a digitally connected lab, could be a game-changer – but only if it’s collected and synthesised into information and knowledge that is useful.

The digital environment (i.e., paperless work in an electronic format) capitalises on digitalisation. It incorporates all of the necessary instrumentation for complete data analysis and enables the full value of the data for decision-making. The ability to monitor operations and provide more sophisticated insights is a core reason for introducing AI into the operational lab environment.



Transforming science

Artificial intelligence (AI) is often defined as the ability of a machine to learn how to solve cognitive challenges. However, in the context of scientific methodology and laboratory interconnectivity, AI is starting to be used for capturing data to model human observation and decision-making processes.

Taken forward, connecting all instruments in a lab via AI enables the opportunity for an even more astute understanding of the interactions between technology and also users, potentially providing an all-inclusive view of all laboratory operations.

Accessing this powerful source of information will become a necessary component of scientific productivity. This is an inevitable next step in creating lab management systems that are so efficient and provide knowledge that is so valuable that only AI will be able to produce them.

AI, coupled with universal sensing capabilities to detect and monitor a range of variables, e.g., an instrument’s power draw, enables companies to realise certain operational and financial benefits to their business and plan for the future. Through high-quality and readily available insights, AI enables the simultaneous monitoring of all equipment usage in the lab and holistic capacity tracking.

Watch our webinar on Industrialising High-Throughput Glycoproteomics Using AI for Clinical Use


Staying competitive in a competitive world

Globally, scientific innovation is accelerating, so labs need to consider the technology investments required to become digitally enabled in order to keep up and stay competitive. We live in a data-driven world, so scientific laboratories must fundamentally transform how they create, manage, and effectively use all the data that is generated in their lab ecosystem. Achieving and sustaining a competitive edge in a world of constant change will require the continual transformation of lab operations and scientific data management. This will be the first and most important step toward becoming a truly digitalised lab.


Standardising honey fingerprinting methods

Although previous work has been done developing case studies for fingerprinting foodstuffs, including honey, the approaches among laboratories have been different regarding sample preparation and instrumental conditions. There are also differences in terms of data processing and analysis. As a result, two laboratories analysing the same sample may obtain slightly different results. Ideally, developing a standardised fingerprinting method that could be used across all LC/MS-based workflows, enabling the same testing technique to be used across multiple laboratories, would be optimal and where future work is aimed.

Read our article on Fingerprinting Honey to Ensure Purity

When addressing the issues of food safety, product quality, and authenticity, each may be governed by separate sets of regulations. For example, looking at the residues of contaminants in honey, such as pesticides, there may be differences globally. Countries may have their restrictions for the maximum limit for specific compounds. Contaminants are a part of the picture when considering fingerprinting for honey, but permitted levels may vary between countries.

Additionally, as samples come from the field to the lab for testing, there is potential interest in reversing this and bringing the lab out into the field instead. This interesting but not yet recognised capability would enable regulators and the global food industry to respond more quickly to honey contamination and food fraud.

Step into the future, elevate your business and talk to our team of experts about how you can improve the productivity, efficiency and accuracy of your lab.

Tips for Preserving Data Integrity

Credible lab results depend on the quality and reliability of your data, regardless of which industry or function your lab serves. The complexities of ensuring data integrity can be overwhelming, but we are here to assist you and optimise your lab’s performance.

The final phase of the analytical process is perhaps the most critical stage for assuring data integrity. This is where raw data, factors, and dilutions come together to create reportable values, and labs must consider and respond to the potential for improper manipulation — in all its various forms.

There are a few critical choices to be made around calculation and reporting that impact compliance, the trustworthiness of results, and even the reputation of the lab.

Watch our webinar on Addressing Data Integrity Gaps webinar

No lab wants to go through all the work of setting up methods, conducting analysis and gathering data only for it to be for nought or at risk because the data integrity system wasn’t up to par. Here is our advice for maximising lab efficiency and data integrity simultaneously:


Go paperless as far as possible

No matter where calculations happen, it must be possible to see the original data, calculation procedure (method), and outcome. In addition, there must be sufficient transparency to capture any changes to factors, values, or the calculation procedure for review. To meet these requirements, there are three primary options to consider:

A spreadsheet: This remains the least efficient, least compliant, and least effective option for data integrity. A spreadsheet typically has manual data entry and permits an analyst to recalculate results before printing and saving the desired result values for the permanent batch record. Why do so many labs continue to choose it? Not simply to support the paper industry but because it is familiar and comfortable. It is time to move on to better options.

A LIMS or ELN application: If configured correctly, many of these applications have audit trail capabilities, access controls to prevent unauthorised actions and versioning of calculations, the ability to perform calculations that are problematic for chromatography applications, and more. However, their ability to interface is a process strength and data integrity weakness. Data sent into LIMS or ELN can be manipulated externally and then sent to the LIMS or ELN for calculation.

A CDS application: The chromatography data system is often the best calculation location. It usually provides access control to prevent unauthorised changes, versioning of calculations, and audit trail reviews for changes in calculated values and the calculations themselves. In addition, the calculations are in the same system that holds the original (raw) data, so that review is usually within one system.


Cut reporting time without increasing data integrity risks

Focus on the highest risks and use a CDS application to accelerate the reporting process. Interestingly, the greatest data integrity risks are sometimes indicated by a lack of out-of-specification (OOS), out-of-trend (OOT), or out-of-expectation (OOE) results. In many cases, falsification activities are directed at making test results that would fail the specification into passing results through various forms of data manipulation. This makes it prudent to carefully review results near specification limits (say, within 5%) to verify that all changes and calculations are scientifically justified.

To accelerate your reporting process, don’t print all your data; print a summary. An exhaustive printout makes it harder for the second person to review. Instead, leave most data electronic, print the summary, and facilitate a quicker review process.


Review your management policies

Management can inadvertently create a climate where personnel are encouraged to manipulate test results. Mandates such as “zero deviations,” “no product failures,” and “meeting production targets” can encourage data manipulation. Throw in the possibility of a demotion or dismissal for failure to meet any of these mandates, and the environment is ripe for data manipulation.

The irony is that two losers are created: the patient who receives a sub-standard product, and the company that no longer knows its true capability or process trend—or worse, suffers reputational damage. This phenomenon is recognised by the Pharmaceutical Inspection Convention and Pharmaceutical Inspection Co-operation Scheme (PIC/S) data integrity guidance, warning that management should not institute metrics that cause changes in behaviour to the detriment of data integrity.


Learn more about the capabilities of OpenLab CDS

The newest release of OpenLab CDS software helps you strengthen data integrity while accelerating calculation and reporting processes. To cite just a few key features and capabilities:

The Custom Calculator tool: automatically computes unique values directly within the software, removing error-prone calculation steps and allowing you to meet compliance requirements faster and with less effort. Custom Calculator can also flag changes made after initial use of the calculation procedure — telling the reviewer that audit trails should be checked to assess the scientific merit of the change or changes. Download the Technical Overview

Automated reporting: with OpenLab CDS, analysts no longer have to enter data manually or print everything. If you analyse approximately 500 samples per month at 10 minutes per sample, including data review time, manual data entry takes about 1000 hours per year or about 25, 40-hour weeks—half of an analyst’s time. Using OpenLab CDS, reporting time can be reduced to 5 minutes per sample for time savings of 500 hours or 12.5 weeks per year.

Technical controls: within the audit trail give analysts the ability to highlight data changes and deletions to facilitate the review process, enable review by exception and create efficient search routines within an individual project or the whole database to identify data trends and inconsistencies. The application also documents that audit trail entries have been reviewed.

To learn more about OpenLab CDS for your lab and the preservation of your data integrity, learn more about the software on our Solutions page.