Detecting PFAS and Other ‘Forever Chemicals’ in SA’s Textiles

Festive fashion, hidden risks

With the holiday season fast approaching, South Africans are gearing up for warm-weather celebrations, stocking up on water-repellent jackets, quick-dry swimwear and stain-resistant tablecloths. But behind the seasonal sparkle lies a silent concern: PFAS, or per- and polyfluoroalkyl substances.

 

 

Nicknamed “forever chemicals” for their resistance to breakdown, PFAS are commonly used in textiles to enhance durability and repel liquids. However, their environmental persistence and health risks, ranging from hormonal disruption to cancer, have made them a growing concern worldwide.

 

As international regulations tighten, textile retailers, importers and labs in South Africa must prepare to detect and manage PFAS contamination.

 

Why is PFAS detection in textiles so difficucon

Detecting PFAS in fabric isn’t like testing for surface-level contaminants. These chemicals can:
  • Be present in ultra-trace amounts
  • Be embedded in complex synthetic fibres
  • Require extensive and delicate preparation before testing

 

 

Traditional methods rely heavily on manual prep, increasing the risk of human error. For busy labs and testing facilities, especially in high-demand seasons, this leads to:
  • Delays in turnaround times
  • Inconsistent results
  • Potential non-compliance with regulations

 

 

Automation is transforming textile PFAS testing

Forward-looking labs are turning to automation to solve these pain points. By integrating Agilent’s LC/MS instruments with Raykol’s automated SPE (Solid Phase Extraction) systems, labs can drastically improve their efficiency and precision.

Benefits of this approach include:
  • Faster processing of large sample volumes
  • Minimised manual intervention
  • Higher consistency and reproducibility
  • Freed-up lab staff for data analysis rather than repetitive prep tasks
This workflow is especially valuable during South Africa’s high-spend festive months, where time and accuracy are critical.

 

How does Raykol’s automated SPE system improve sample prep?

Sample preparation is often the most manual and error-prone stage of PFAS testing. Raykol’s Fotector SPE platform automates this process, reducing variability and increasing throughput.

Key benefits of Raykol’s system include:
  • Reduced contamination risk from human handling
  • Faster preparation times for large volumes
  • Seamless compatibility with LC/MS workflows
  • Improved repeatability and lab efficiency

 

 

 

Agilent LC/MS: Trusted precision for PFAS detection

Agilent’s Liquid Chromatography/Mass Spectrometry (LC/MS) systems are purpose-built to detect ultra-low concentrations of PFAS in even the most complex textile materials.

These platforms help labs:
  • Comply with global regulations (e.g. EU REACH, US EPA, SAICM)
  • Process large test batches without compromising accuracy
  • Stay competitive by delivering reliable, compliant results on time

 

 

PFAS testing protects more than compliance

While regulation is a key driver, the real value of PFAS detection goes beyond ticking boxes. South African retailers and importers who adopt rigorous testing practices also gain:
  • Consumer trust during peak sales seasons
  • Brand differentiation as safety-conscious and transparent
  • Supply chain resilience against new international bans or restrictions
  • Preparedness for the expanding global push toward PFAS elimination

 

Case in point: A South African home textile importer recently adopted Agilent + Raykol systems and achieved a 60% reduction in turnaround time, enabling full compliance with updated EU restrictions before they took effect.

 

What’s next? Build a smarter PFAS detection strategy

PFAS are here, regulations are rising, and expectations around chemical safety are increasing fast. Now’s the time to modernise your PFAS testing workflows with automation and precision analytics.

Make your lab smarter, faster, and fully compliant – before it’s mandatory.

 

PFAS in South Africa: Should We Be Worried?

Imagine a chemical so persistent that it resists breaking down in the environment, earning it the nickname “forever chemical.” Per- and polyfluoroalkyl substances (PFAS) are just that—synthetic compounds found in everyday items like non-stick cookware, waterproof clothing, and firefighting foams. While their durability made them industrial favourites, this same resilience has led to widespread environmental contamination. In South Africa, the presence of PFAS in water sources is becoming an increasing concern, prompting questions about their impact on health and the environment.

Unpacking the PFAS puzzle

PFAS have been linked to various health issues, including hormonal disruptions, immune system effects, and certain cancers. Their ability to accumulate in the human body and the environment makes them particularly worrisome. In South Africa, studies have detected PFAS in water sources, raising alarms about potential exposure. However, detecting and analysing these compounds is no simple task. Their chemical stability and low concentrations in environmental samples pose significant challenges for laboratories, necessitating advanced analytical techniques and instruments.

 

 

 

The analytical challenge of PFAS detection

Traditional analytical methods often fall short when it comes to detecting the vast array of PFAS compounds, especially at trace levels. Non-targeted analysis (NTA) and suspect screening have emerged as crucial approaches, allowing scientists to identify both known and unknown PFAS compounds in various matrices. However, these methods require high-resolution mass spectrometry and sophisticated data analysis capabilities. In South Africa, the adoption of such advanced techniques is still in its nascent stages, highlighting the need for enhanced laboratory infrastructure and expertise to effectively monitor and manage PFAS contamination.

 

 

Enhanced detection

The Agilent Ultivo LC/MS system offers a compact yet powerful solution for PFAS analysis. Designed for high-throughput laboratories, it combines sensitivity and robustness, making it ideal for detecting low levels of PFAS in complex environmental samples.

 

Key benefits:

  • Compact Design: Saves valuable laboratory space without compromising performance.
  • High Sensitivity: Detects trace levels of PFAS, ensuring accurate quantification.ScienceDirect
  • Robust Performance: Handles complex matrices with minimal maintenance requirements.
  • User-Friendly Interface: Simplifies operation and data analysis, reducing training time.

 

Chemetrix provides comprehensive support for the Ultivo LC/MS, including installation, training, and maintenance services, ensuring laboratories can maximise the instrument’s capabilities.

 

Comprehensive analysis

For laboratories seeking advanced capabilities, the Agilent 6546 LC/Q-TOF system offers high-resolution mass spectrometry for both targeted and non-targeted PFAS analysis. Its accurate mass measurements and fast acquisition rates enable the identification of a wide range of PFAS compounds, including emerging contaminants.

 

Key benefits:

  • High-Resolution Detection: Accurately identifies and quantifies known and unknown PFAS compounds.
  • Fast Acquisition Rates: Enhances throughput, allowing for the analysis of more samples in less time.
  • Advanced Data Analysis: Facilitates complex data interpretation with integrated software tools.
  • Versatility: Suitable for various applications, from environmental monitoring to product safety assessments.

 

Chemetrix offers expert guidance and technical support to integrate the 6546 LC/Q-TOF into laboratory workflows, ensuring optimal performance and data quality.

 

Building a safer future

By adopting advanced analytical instruments like the Agilent Ultivo LC/MS and 6546 LC/Q-TOF, South African laboratories can significantly enhance their PFAS detection capabilities. These tools not only improve the accuracy and efficiency of analyses but also empower scientists to better understand and mitigate the risks associated with PFAS contamination. With Chemetrix as a trusted partner, laboratories gain access to cutting-edge technology and dedicated support, fostering a proactive approach to environmental health and safety.

 

 

 

Partner with Chemetrix for PFAS solutions

Addressing the challenges posed by PFAS requires collaboration, innovation, and the right tools. Chemetrix is committed to supporting South African laboratories in their efforts to detect, analyse, and manage PFAS contamination. Contact Chemetrix today to learn more about our solutions and how we can assist your laboratory in safeguarding public health and the environment.

Combating PFAS ‘The Forever Chemical’ Contamination

Per- and Polyfluoroalkyl Substances (PFAS) are a group of manufactured chemicals that have been used in industry and consumer products since the 1940s due to their useful properties. There are thousands of different PFAS, some of which have been more widely used and studied than others.

Nothing about PFAS – from how they are made, to their unique characteristics, to how they need to be analysed – is easy. These chemicals were developed to simplify our lives, but now decades later, they have become a serious problem due to their elusive and persistent nature, hence the nickname ‘The Forever Chemical.’ What is clear is that PFAS contamination is an environmental and growing health issue, but what is less clear is how to address and manage this issue.

 

The importance of PFAS

PFAS are important because they have been widely used in industry and manufacturing due to their unique chemical properties; properties that make them heat-resistant, able to repel water, and close to indestructible. PFAS compounds have been used in many applications such as non-stick cookware, stain-repellent clothes, food contact materials, detergents, cleaning products, and fire-fighting foams.

The unfortunate consequence of PFAS

For many years, PFAS were thought to be inert and nontoxic and were extensively used with little thought for environmental disposal or ecological impact. It was not until early this century that the extent of PFAS global contamination was first realised. There are over 4000 PFAS compounds thought to have been manufactured and are now potentially in the environment globally.

The research on PFAS compounds has identified them as being persistent and bio accumulative, and their widespread use has led to them being almost ubiquitous in the environment. Because PFAS do not break down, they enter the environment through production or waste streams. In South Africa, the presence of PFAS has been detected in some water sources, including rivers and dams.

“PFAS are a new style of pollutants that don’t follow the ‘rules’ of traditional organic pollutants. This is why regulators and scientists, unfortunately, failed to predict how these chemicals would move through the environment, and why we now have a serious problem of such widespread PFAS contamination of drinking water, agricultural land, and the domestic environment.”

– Bradley Clarke, senior lecturer in Analytical Chemistry and Environmental Science, at the University of Melbourne in Australia, and an Agilent collaborator.

 

PFAS exposure and human health

People can be exposed to low levels of PFAS compounds through consumer products that contain PFAS, for example, carpets, leather and apparel, textiles, paper and packaging materials, and non-stick cookware. Drinking water can also be a source of exposure in communities where these chemicals have contaminated water supplies, such as an industrial facility where PFAS were produced, or used to manufacture other products, or an oil refinery, airfield or other location at which PFAS may have been used for firefighting.

Download our eBook Guide to Targeted Quantification and Screening of PFAS Compounds in Environmental Matrices >

Helping scientists learn more about PFAS

PFAS contamination is a complex issue. While knowledge about PFAS compounds and their potential health effects has grown, many questions remain unanswered. It’s also a global issue and collaborative research allows countries to share knowledge, best practices, and effective solutions.

Watch our webinar on Strategies to Optimise Performance of PFAS Analysis >

Committed to helping scientists and regulators around the world solve these water issues to provide safe and sustainable water sources for everyone, Agilent has recently developed a protocol for the analysis of PFASs in drinking water using the Agilent Ultivo triple quadrupole LC/MS. Working with leading researchers around the world, Agilent has also developed a method for extracting PFASs in drinking water using Agilent Offline Solid Phase Extraction and an Agilent LC/MS/MS system with a PFAS-free 1290 Infinity II LC System.

Agilent Ultivo LC/MSMS

 

Agilent 1290 Infinity II 2D-LC System

 

Providing scientists with measurement and identification technology solutions to accurately analyze PFAS chemicals in water is a critical first step for estimating human exposure and potential risk. Robust analytical techniques that can provide unbiased quantitative and qualitative data on these PFAS pollutants at trace levels are necessary for further understanding their environmental fate, ecological impacts, and impacts on public health. These analytical techniques and the fundamental data they generate will allow scientists and regulators to make informed assessments of PFAS use in modern society.

Watch our webinar on The PFAS Lab of the Future >

Although PFAS research on the African continent is not extensive as yet, the growing awareness and need to understand these chemicals for policy and regulation is necessary. As an analytical instrument supplier and solutions provider for laboratories, Chemetrix is committed to helping combat the “Forever Chemical” challenge.

Parts of this article have been adapted from the original published by Agilent.

Aqueous Film Forming Foam Formulations

Aqueous film forming foam (AFFF) is an effective fire suppressant for petroleum-based fires.  Foams are primarily composed of complex mixtures of per- and polyfluorinated substances (PFAS), but the exact composition is protected business information.  Identification of PFAS using High–resolution mass spectrometry (HR-MS) only utilizes the accurate mass and isotope pattern of the molecular ion and is not robust as formulas do not provide structural information.  Fragment ions from MSMS spectra can greatly improve identification confidence with software tools such as Fluoromatch. Data-dependent acquisition (DDA) is a common tool used to acquire MSMS spectra when the composition is unknown.  In this study, three approaches based on DDA acquisition for the MSMS fragmentation of fluorinated compounds were optimized and compared.

 

Emily Parry, PhD
LC/MS Applications Scientist
Agilent Technologies, Inc.

 

Emily Parry received her PhD degree in Environmental Chemistry from the University of California, Davis. She joined Agilent after completing her postdoctoral work at the Environmental Protection Agency (EPA). Her specialty is method development and measurement of emerging contaminants.

 

Register and watch on demand >

 

Water Analysis | Per- and Polyfluoroalkyl Substances (PFAS)

(PFAS) are persistent, bioaccumulative, and a health concern, calls for more regulatory guidance and stringent requirements have increased. As a market leader in environmental analysis for over 40 years, Agilent offers complete start-to-finish workflows for extraction, screening, quantification, and reporting of PFAS in water and environmental samples.

 

Resources

PFAS Analysis in the Environment: Agilent solutions to improve productivity & robustness

Presentation

Reduce PFAS Background with the Agilent PFC-Free* HPLC Conversion Kit Link:

Technical Overview