Unlocking the Potential of Automated Imaging Tools in Cell Culture and Assay Development

In the dynamic landscape of cell biology research, advancements in technology continually reshape our understanding of cellular processes and pave the way for innovative discoveries. Automated imaging tools stand at the forefront of this revolution, offering researchers valuable insights into improving routine cell culturing techniques and enhancing the effectiveness and reproducibility of downstream cell-based assays.

Automated imaging tools help researchers learn more about how to make cell culturing better and how to improve the accuracy and consistency of cell-based tests. Unlike traditional manual methods, which are prone to subjectivity and variability, automated imaging offers an objective, quantitative analysis of cellular parameters in real time.

This level of precision and consistency is essential for optimising cell culture conditions, evaluating the efficacy of experimental treatments, and ensuring the reproducibility of results across experiments. Additionally, high-content imaging capabilities enable researchers to multiplex their analyses, simultaneously probing multiple cellular features within the same sample. This holistic approach not only enhances the efficiency of assay development but also allows for a more comprehensive assessment of cellular responses to various stimuli.

Overall, automated imaging tools empower researchers to unravel the complexities of cellular processes with unprecedented accuracy and throughput, driving innovation and accelerating discoveries in cell biology.


Enhancing Cell Culturing Techniques with Automated Imaging

Cell culture lies at the heart of many biological studies, serving as a foundational technique for a myriad of applications, from basic research to drug discovery. However, traditional methods of assessing cell health and behaviour often rely on subjective observations and manual interventions, leading to variability and inefficiencies. Enter BioTek’s LionHeart FX, which can revolutionise cell culture workflows by providing real-time, quantitative data on cell morphology, viability, and proliferation. BioTek Lionheart FX allows you to capture, process, analyse, annotate images, and produce videos with ease. By automating image acquisition and analysis, researchers can gain deeper insights into cellular dynamics, optimise culture conditions, and ensure reproducibility across experiments.

Agilent BioTek Lionheart FX Automated Microscope


Empowering Assay Development

The effectiveness of cell-based assays hinges on the accuracy and reliability of the data obtained. BioTek’s Cytation emerges as a game-changer, offering high-content imaging capabilities that enable multiplexed analysis of cellular parameters in a single experiment. Digital microscopy and multimode detection deliver both phenotypic data and quantitative data from one instrument, maximising laboratory productivity. With its automated imaging and image analysis features, Cytation streamlines assay development accelerates screening processes and enhances the robustness of downstream assays, ultimately driving efficiency and productivity in research endeavours.

Agilent BioTek Cytation C10 Confocal Imaging Reader


Optimising Workflow Efficiency with Integrated Liquid Handling

Liquid handling is a critical aspect of cell culture and assay development, where precision and accuracy are paramount. Manual pipetting procedures not only pose a risk of human error but also limit throughput and scalability. In this regard, BioTek’s MultiFlo FX delivers unparalleled flexibility and efficiency by integrating automated liquid handling with imaging capabilities. Whether dispensing media, performing cell-based assays, or conducting plate washing steps, MultiFlo FX streamlines workflows, minimises hands-on time, and ensures consistent results, empowering researchers to focus on data analysis and interpretation.

Agilent BioTek MultiFlo FX Multimode Dispenser


Embracing the Future of Cell Biology with BioTek

In the rapidly evolving field of cell biology, leveraging state-of-the-art technology is essential for driving innovation and pushing the boundaries of scientific discovery.


BioTek’s Cell Analysis instruments represent a beacon of innovation, offering researchers a comprehensive suite of tools to elevate their research to new heights.


The AI Advantage in Revolutionising Lab Quality Control

Imagine a lab where precision meets efficiency, and every operation is optimised to perfection. In the intricate world of laboratory operations, a silent revolution is underway – the integration of Artificial Intelligence (AI) to elevate the standards of quality control. A game-changer that holds the key to unlocking unparalleled advancements in scientific research and experimentation.


The crucial role of AI in lab quality control: Today and tomorrow

As laboratories grapple with increasing complexities in research and analysis, the importance of AI technology becomes increasingly apparent. AI is not just a futuristic concept; it is the present and the future of laboratory operations. Today, AI is being harnessed to enhance quality control practices by providing real-time monitoring, predictive analytics, and automated decision-making.

Looking ahead, AI is poised to become the cornerstone of innovation in labs, offering solutions to challenges that were once deemed insurmountable.


Benefits of using AI in lab quality control: Precision redefined

Real-Time Monitoring: AI systems can monitor and analyse data in real-time, providing an instantaneous and comprehensive view of lab processes. This facilitates early detection of anomalies and deviations, allowing for immediate corrective actions.

Predictive Analytics: By leveraging historical data, AI can predict potential issues before they occur. This proactive approach enables labs to implement preventive measures, minimising the risk of errors and ensuring consistent quality.

Automation of Routine Tasks: AI excels at automating repetitive and routine tasks, freeing up human resources for more complex and creative endeavours. This not only increases efficiency but also reduces the likelihood of human error in quality control processes.

Enhanced Data Analysis: The power of AI lies in its ability to analyse vast datasets quickly and accurately. This capability is invaluable in quality control, where precise analysis is paramount for ensuring the reliability of results.


Future-proofing lab operations with AI

As we embrace the current wave of AI applications in quality control, it’s crucial to consider how these technologies can future-proof lab operations and inspire innovation. Integrating AI-driven technologies like machine learning algorithms, robotic process automation, and advanced analytics positions laboratories at the forefront of scientific advancement. Imagine a future where AI not only optimises existing processes but also catalyses the development of novel methodologies and approaches, pushing the boundaries of what is possible in scientific research.


Explore AI for your lab

In the race toward scientific excellence, laboratories cannot afford to overlook the transformative potential of AI in quality control. The possibilities are vast, and the benefits are tangible. To unlock the full spectrum of AI-driven innovations, labs must explore and embrace these technologies actively. The lab of the future is not a distant vision; it is a reality that can be shaped today through the strategic integration of AI in quality control processes.

With more laboratories embarking on the journey toward AI-driven quality control, the call to action is clear – explore the possibilities, discover the potential, and redefine the future of your lab.


To take the first step towards integrating AI into your quality control processes, engage with leading experts and solution providers. The evolution of laboratory operations awaits, and AI is the key to unlocking unparalleled advancements in quality control and scientific discovery.


Modernise Your Lab with Intelligent Software

To move into the digital age, you need software that can help you manage the growing amount of data generated by the modern lab. The right tools help turn that data into actionable insights and keep your lab operating efficiently. Today’s laboratory software solutions need to easily migrate data and methods from aging platforms and simplify data analysis and reporting tasks.

This webinar explores key features laboratory software must have to meet the demands of today’s laboratory. It also discusses the best process to migrate methods and data to the latest software platform. Another touchpoint is how to increase productivity and accessibility of instruments through a modern cloud-based architecture.



Kathleen O’Dea
Application Engineer
Agilent Technologies, Inc.

Kathleen O’Dea has a 20-year history with Agilent’s OpenLab products. As an Informatics Application Engineer, Kathleen has visited customers around the world in a wide variety of market areas, helping them select and implement OpenLab software products.

Register and watch on demand >